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AIIstnct-The properties of the conical failun: criteria that lie just inside and just outside the
Mohr-Coulomb surface are dilCUSSCd. Expressions are developed for the maximum stress ratio
pm1icted by these surfaces as a function of the angu1ar stress invariant. For plane strain problems,
assuming c1astoplastic behaviour, the effect of Poisson's ratio and the dilation angle on the stress
paths and failun: loads have been expressed in a closed·form solution. Finally, the expressions arc
confirmed using finite element analysis of a simple boundary value problem.

I. INTRODUCTION

This paper considers some of the properties of conical failure criteria in principal stress
space which, in the past, have been postulated as suitable for representing soil strength.
The surfaces considered here lie just inside, and just outside, the hexagonal surface of
Mohr-Coulomb (Fig. 1). Because the names given to these surfaces by different authors
have tended to be somewhat ambiguous, they will be referred to here as the Internal cone
and the External cone.

Several authors in the past have considered these surfaces. For example, Bishop[l]
showed that the External cone contained a singularity when the friction angle tP approached
36.9°, giving an infinite stress ratio in triaxial extension. Zienkiewicz et 01.[2] implemented
several different conical surfaces in a boundary value problem of bearing capacity and
computed a wide range of collapse loads. It appeared that subtle changes in the cross
section of a failure surface could have a significant effect.

It is felt that the Mohr-Coulomb failure surface is still the simplest and most
appropriate for use in soil mechanics, and it is not the author's intention to resurrect the
use of conical surfaces. It is hoped, however, that the following discussion may improve
understanding of the fundamental behaviour of these and other surfaces.

F. = t + 2{i~in.s= 0
:Xl 3-sm,

F =t+ v'2sin.lls =0
MC I'3cos9-sin.sin9

{isinn
~..,,~~FINT=t+ 13+sin\.Ill\ii = 0

c =0

Fig. 1. Conical yield criteria.
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2. REPRESENTATION OF STRESS IN PRINCIPAL STRESS SPACE

A compression-negative sign convention is assumed throughout, and a stress point in
principal stress space is defined.using the invariants

(s, t, 8),

where

1
s = )3(0'%+0')/+0'.)

t = ~[(0'%-0')/)2+(0')/-0'.)2+(0'.-0'.,)2+6'1';)/+6'1';"+6'r;.J1/2

and

The third deviatoric stress invariant is given by

where

s., = (20'.,-0')/-0'.)/3, etc.

(1)

(2)

(3)

(4)

(5)

In this notation, s gives the perpendicular distance of the 1£-plane, from the origin, and
(t, 0) act as polar coordinates within that plane. Other invariants are equally applicable[3],
but those given in expression (1) are favoured by this author because they represent actual
lengths in principal stress space.

The principal stresses are easily obtained from the invariants to give

(6)

Noting that sin (8+21£/3) ~ sin 8 ~ sin (8 - 21£/3), eqn (6) ensures that 0' I is the smallest
of the three principal stresses and hence the most compressive.

The angularinvariant 8 from eqn (4) can be shown to vary in the range - 30° ~ 8 ~ 30°.
The lower bound c9rresponds to a positive principal axis in the n:-plane and triaxial
extension conditions, whereas the upper bound corresponds to a negative principal axis in
the 1£-p1ane and triaxial compression conditions. All other stress conditions, such as plane
strain for example, correspond to intermediate values of 8.

BishoP[l] defined a parameter, b, which gave the magnitude of 0'2 relative to 0'\ and
0'3, where

(7)
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It follows, then, that the angular invariant is related to Bishop's b as follows:

fJ = arctan [(1-2b)/J3l,

and hence

sss

(8)

(9)

In the derivations that follow, reference will be made to two measures of shear stress
level or strength; the invariant "shear stress level" tis, and the "stress ratio" (1./(13 with
the latter given by the ~ymbol, R.

These two quantities are related from eqn (6), giving

R = 1+j2(t/s) sin (fJ-2n/3).

I +j2(t/s) sin (O+2n/3)

3. THE FAILURE CRITERIA

3.1. Mohr-Coulomb
In terms of principal stresses, this criterion may be written thus:

(10)

(11)

where 4J and c are the familiar friction angle and cohesion of the soil. Substitution of the
principal stresses from eqn (6) gives

-j2 sin 4Js .j6 cos 4Jc
t= + ,J3 cos fJ - sin (J sin 4J J3 cos (J - sin fJ sin 4J

which, for a cohesionless soil, may be written in terms of the shear stress level at failure,
where

(
t\ -j2 sin 4J
sJ=J3 cos (J-sin fJ sin 4J'

(12)

The shear stress level can be thought of as the tangent of the angle of inclination of
the failure surface to the space diagonal. In the case of Mohr-Coulomb's criterion, this is
a function of the angular stress invariant (J as shown in eqn (12).

3.2. External cone
The shear stress level at failure for a conical surface is a constant. For the External

cone, it is found by making the substitution (J = 30° into eqn (12), as this is the point
at which the External cone coincides with Mohr-Coulomb corresponding to triaxial
compression stress conditions.

In general,

and for a cohesionless soil,

- 2j2 sin 4J s 2.j6 cos 4J c
t= 3 . "I.. + 3 . "I.. ,-sm 'I' -sm 'I'

(
:\ = -20 sin 4J.
sJ 3-sm ¢

(13)

(14)
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3.3. Internal cone
This cone is internally tangential to the Mohr-Coulomb surface and is obtained from

Mohr-Coulomb's expression by making the substitution[4] .

8 = arctan (-sin q,/j3).

This leads to the general expression

which for cohesionless soil becomes

(t\ -J2 sin q,
s), = (3 +sin2 q,)l/r

(15)

(16)

(17)

4. STRESS RATIO AT FAILURE

The stress ratio of a soil at failure is a commonly used measure of strength in
geotechnical engineering, and it is of interest to note the values of R, predicted by the
three criteria considered above.

4.1. Mohr-Coulomb
By definition, the stress ratio at failure is a constant given by

(18)

4.2. External cone
Although (tis), is a constant given by eqn (14), the stress ratio at failure is a function

of8.
By substituting eqn (14) into eqn (10), the following expression is obtained:

R =3-sin q,-4 sin q, sin(8-21t/3)
of 3-sin q,-4 sin q, sin(8+21t/3)'

(19)

which becomes singular whenever q, and 8 combine to make the denominator zero. The
most important and best known singularity[l] occurs in triaxial extension (6 = -30°)
when q, =: 36.9°. It is interesting to note, however, that for smaller values of q" the
maximum stress ratio does not occur at the triaxial extension position, but at an
intermediate value of the angular invariant given by the expression

dRtld6 =: O.

Solution of eqn (20) gives

8mv. =: arcsin [-2 sin q,/(3-sin q,»);

(20)

(21)

hence the maximum stress ratio always occurs at a negative value of the angular stress
invariant.

Substitution of 8max into eqn (19) leads to

(3-2 sin q,-sin2 q,)1/2+2 sin q,
R,.... =: (3-2 sin q,-sin2q,)1/2_2 sin q,' (22)

Figure 2(a) shows the variation of eqn (19) for different values of the soil friction
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• Rfmax 9°

10 1.55 -7. 06

30 7.19 -23. 59
20 35 27.28 -28.21

36.9 00 -30.00

• =10

55?

-30 -20 -10 o 10 20 9 30

Fig. 2(a). Stress ratio at failure for External conc.

angle. As would be expected, with the exception of triaxial compression conditions
(6 = + 30°), Mohr-Coulomb's strength is always over-estimated by this surface.

4.3. Internal cone
This surface lies completely within the Mohr-eoulomb surface; hence it will always

predict lower strength except at the point where they coincide.
As with the External cone, the stress ratio at failure is a function of 6, [Fig. 2(b»), and

it can be shown that

(3+sin2 tP)I/2-2 sin tP sin (6-2:n/3)
Rf = (3+sin2 tP)I/2-2 sin tP sin(6+2:n/3)'

with the maximum stress ratio occurring at the tangent point given by eqn (15); hence

Rf • Rfmax 9°

5 10 1· 42 -5'73

• =40 20 2'04 -11'17
30 3'00 -16,10
40 4·60 -20,36

• =30

• =20--~':':"'---+2- _-
-30 -20 -10 0 10 20 9 30

Fig. 2(b). Stress ratio at failure for Internal conc.

(23)

(24)
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5. EFFECT OF POISSON'S RATIO

Many problems in soil mechanics deform under plane strain conditions, and for the
prediction of collapse loads, elastic-perfectly plastic constitutive models will often be used.
Simple models such as these are justified on the grounds that the values of collapse loads
are usually insensitive to the soil's constitutive behaviour prior to failure.

A study of the elastic stress paths, however, shows that certain combinations of elastic
properties and failure surfaces can affect collapse load predictions[5].

The value of Poisson's ratio is significant in the study of elastic plane strain stress
paths. Given that

(25)

and substituting for (12 in the principal stress versions of eqns (2) and (3), yield the shear
stress level

t -J2{v2-v+ 1)1/2

s= l+v
(26)

and angular stress invariant

0= arctan[{1-2v)/j31. (27)

Equations (26) and (27) show that the plane strain stress path is a function ofPoisson's
ratio only, and these functions are plotted in Fig. 3. When viewed in a particular n-plane
such as that corresponding to s = -1 (Fig. 4), the effect ofvarying Poisson's ratio between
zero and one-half results in a straight line variation. When v = 0, the highest shear stress
level is obtained corresponding to triaxial compression (0 =30°). It may be noted that
irrespective of the value of v, the angular stress invariant during elastic deformation is
positive.

The fact that the value of Poisson's ratio can influence the shear stress level by up to
73% as it varies between zero and one-half raises the possibility that certain elastic stress
paths may not have sufficient inclination to. reach a conical surface. This limiting case
would occur if the elastic stress path ran parallel to the sides of the cone.

0.4 11 0.50.30.2

-1.5

-1.4

-1.3
t
5-1.2

-1.1

-to
-0.9

-08
0 0.1

30

20

9

10

o L-._-,---'T_-~'-"""-~
0.1 0.2 0.3 0.4 'U 0.5

Fig. 3. Stress path for dift'erent values of Poisson's ratio in plane strain.
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TT-plane

9 = 0

Mohr- Coulomb
with c = 0,
f) =90°

-a;
Fig. 4. Effect of Poisson's ratio on plane strain-stress paths in the It-plane.

SS9

5.1. Mohr-Coulomb
In the case of the Mohr--coulomb surface, the shear stress level at failure is a function

of the angular invariant e. Substitution of tIs and efrom eqns (26) and (27) into eqn (12)
yields the threshold value of 4> == 90°. This means that for all realistic soil friction angles,
the surface will be reached regardless of the value of Poisson's ratio. As shown in Fig. 4,
the locus of elastic plane strain stress paths for varying values of Poisson's ratio coincides
with the Mohr--coulomb surface for a friction angle of 90° in the sector defined by
o~ e~ 30°.

5.2. External cone
The External cone predicts a stress ratio at failure which varies with e [eqn (19)].

Substitution from eqn (27) given the stress ratio at which the surface is first reached after
elastic deformation to be

R == (3-sin 4>)(v2-v+ 1)1/2-2(2-v) sin 4>
(3-sin 4>)(v2-v+ 1)1/2_2(1 +v) sin 4>'

(28)

As the elastic stress paths can only traverse stress space corresponding to positive
values of e, the maximum and minimum values of R from eqn (28) are given by putting
v == ~ and v == 0, respectively, as shown in Fig. 5.

By combining eqns (14) and (26), it is also possible to find the critical combination of
friction angle and Poisson's ratio for which the external cone would never be reached by
an elastic stress path. ThisTesults in eqn (29)

. [ 3(v2-v+ 1)1/2 ]
4> == arCSlD 2(1 +v)+(v2-v+ 1)1/2 (29)

shown plotted in Fig. 6. It is easily shown that eqns (29.) .and (19) are in fact expressing
the same singularity in the external cone. By rearranging eqn (29) and substituting for
Poisson's ratio [from eqn (27)], the denominator of eqn (19) (put to zero) can be recovered.

By similar reasoning, the stress ratio at which the Internal cone is first reached in an
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Fig. S. Stress ratio at "first yield" vs Poisson's ratio in plane strain.

elastic plane strain analysis is given by

(3+sin2 tP)I/2(V2_V+ 1)1/2+(2-v) sin tP
R == (3 + sin2 tP)I/2(V2_V+ 1)1/2_(1 +v) sin tP' (30)

As the Internal cone lies wholly within the Mohr-Coulomb surface, it is reached for
all values of Poisson's ratio, irrespective of the value of tP.

6. ELASTOPLASTIC BEHAVIOUR UNDER PLANE STRAIN CONDmONS

The previous section was concerned with clastic plane-strain stress paths and showed
that the stress ratio R at which the failure surfaces were first reached could be expressed
as a function of Poisson's ratio.

If elastoplastic behaviour in plane strain is considered, however, the ultimate value of
the stress ratio predicted by the conical surfaces is always greater than the .values given by
eqns (28) and (30). This is because the angular invariant of stress, 8, changes during plastic
straining from its initially positive value during elastic straining to a negative value at
failure.

In the following derivations, the potential functions are defined as being algebraically
identical to the functions defining the failure surfaces but with tP replaced by y,. For

,...------......,90-------,

80•70

60

36·9°- 30

20

10
0·50 0·35 0·18 v 0·0

-30 ·20 -10 0 10 20 8 30

Fig. 6. Limiting tP VI Poisson's ratio in plane strain (External cone).
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example, if the failure surface is defined as

F=O,

then for a cohesionless soil, the External cone from eqn (14) is given by

F - 2J2 sin 4>
- t+ 3 . ,,/,. s,-sm ."

and the potential function Qby

2j2 sin t/I
Q= t+ 3 . •1, s.-sm 'f"

Similarly, for the Internal cone, these functions are defined as

and

J2 sin t/I .
Q= t+ (3 +sin2 t/I)1/2 S•

561

(31)

(32)

(33)

(34)

(35)

During plastic yielding, increments ofplastic strain are conveniently expressed in terms
of volumetric and deviatoric invariants iJP and 1. These equations are directly analogous
to the stress invariants s and t [eqns (2) and (3)] with stress components replaced by plastic
strain increment components. Plasticity theory states that plastic strain increment directions
lie normal to the plastic potential surface Q, thus during yielding

tis = -iJPW·

Analogous to the stress ratio R is the "dilatancy rate" D which is defined as

D = 1- j3(vP/~),

(36)

(37)

where ~ is the plastic major principal strain increment on an element of material under
triaxial or plane strain conditions. According to stress-dilatancy theory[6], D reaches a
maximum at the failure stress ratio. Although R and D are not invariants and are only
strictly applicable to element tests, the properties they represent are frequently extrapolated
to more general loading cases. The remainder of this section, however, will be confined to
a discussion of element loading.

At failure, the value of D given by eqn (37) can be simplified as follows :

D = -2f!'3/~

D = -U'3/~

(triaxial Y2 = ~),

(plane strain Y2 = 0).

(38a)

(38b)

Furthermore, the plastic strain increment invariants in plane strain at failure are given
by

(39)

(40)
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For Mohr-Coulomb potentials from eqn (12), the invariant dilatancy ratio is given

riP )2 sin '"
yP == j3 cos (J-sin (J sin ",'

(41)

which from eqns (38b), (39) and (40) can be rearranged as follows:

(42)

The dilatancy rate in a Mohr-Coulomb material, like the stress ratio, is therefore not
dependent upon the value of the angular stress invariant.

For the External cone from eqn (14),

rjP 2)2 sin '"
jP == 3-sin '" ;

hence

3-sin "'-4 sin '" sin(8-21t/3)
D == 3-sin "'-4 sin'" sin(8+21t/3)"

If at failure, D is maximised; this occurs when

(J == arcsin [-2 sin "'/(3 - sin "')],

and is given by

(3-2 sin "'-sin2 "')1/2+2 sin '"
Dmn == (3-2 sin t/I-sin2 "')1/2_2 sin "'.

(43)

(44)

(45)

(46)

The corresponding stress ratio at failure is given by substitution of (J from eqn (45) in
eqn (19); hence

3-sin <p-sin "'-sin <p sin "'+2(3-2 sin "'-sin2 ",)1/2 sin <p (47)R,- 3-sin <p-sin "'-sin <p sin "'-2(3-2 sin t/I-sin2 ",)1/2 sin <p.

The stress ratio at failure is thus dependent upon both <p and t/I, as the latter governs
the value of the angular invariant to give maximum dilatancy.

Similarly, for the Internal cone from eqn (17),

rjP )2 sin '"
jP == (3 +sin2 t/I) 1/2;

hence

(3+sin2 y,)1/2_2 sin '" sin (8-21t/3)
D == (3+ sin2 "')1/2_2 sin y, sin(8+21t/3)"

The maximum dilatancy rate thus occurs when

(J == arctan ( -sin ",/j3),

(48)

(49)

(50)
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Dmax = tan 2(n/4+ 1/1/2).
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(51)

By substitution of () from eqn (50) into eqn (23), the corresponding stress ratio at
failure is given by

2(3 + sin2 cP)I/2(3+sin2 1/1)1/2-2 sin cP sin 1/1+6 sin cP
Rf = 2(3 + sin2 cP)I/2(3+sin21/1)1/2_2 sin cP sin 1/1-6 sin cP'

(52)

It may be noted that the maximum stress ratio that can be achieved for a particular
conical failure surface and potential is only possible if using an associated flow rule (1/1 =
cP). For example, the Internal cone with an associated flow rule will always give strength
corresponding to Mohr-Coulomb. This is because eqn (50) gives the value of the angular
stress invariant at which the two surfaces coincide. Potts and Gens(7) reached similar
conclusions when considering the role of the potential function on plastic deformations
under plane strain conditions.

An obvious disadvantage of assuming associated flow is that the dilatancy rate
predicted greatly exceeds observed values in the laboratory. Stress dilatancy theory gives
that

(53)

for many sand-like materials at failure, whereas associated flow rules with all three surfaces
considered here lead to the ratio of eqn (53) equalling unity. It is a fairly simple matter,
however, to adjust the dilation angle used in a particular analysis so that eqn (53) is
approximately satisfied. This has been done in Fig. 7 for dense materials with cP ~ 30.

To test the validity of the previous expressions and the hypothesis that "failure"
corresponds to Dmax, an elastoplastic analysis has been performed on a single finite element
as shown in Fig. 8. The failure surfaces and potentials were those for the External cone

30

20

External leqns. 46,47)

Fig. 7. ¢ vs '" to give R = 3D at failure in plane strain.
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Fig. 8. Stress ratio at failure for different values of the dilation angle (External cone).

and the initial stress state was assumed to be isotropic. For a friction angle of 30° and a
Poisson's ratio of 0.4, the analysis was performed with three different dilation angles.
Initially, the response is elastic until the failure surface is first reached when R = 4.85 as
given by eqn (28). As yielding takes place, the angular stress invariant changes until
maximum dilatancy is achieved, and the stress ratio increases to its ultimate value given
by eqn (47).

For example, for tP = 30° with the External cone, the values of Table I are obtained.
These values are closely reproduced numerically, as shown in Fig. 8.

It may be noted that when using the external cone, Mohr-Coulomb strengths are
considerably overestimated, even when '" = O.

7. CONCLUSIONS

The stress path followed by an element of material in an elastoplatic analysis under
plane strain conditions has been considered. During the elastic phase, the stress path has
been shown to be a function of Poisson's ratio only and can always be predicted provided
the initial stress state is known.

For the conical failure surfaces which circumscribe and inscribe the Mohr-Coulomb
surface, expressions have been derived giving the maximum ultimate stress ratio that
occurs after plastic yielding in plane strain. It is shown that the corresponding ultimate
value of the angular invariant of stress is that which corresponds to the maximum rate of
plastic dilation. This is uniquely defined by the assumed plastic potential surface and
dilation angle. Consequently, provided the functions describing the failure criterion and
plastic potential are geometrically similar, maximum strength can only be achieved using
an associated ftow rule. For the case of the Internal cone, associated ftow will always

Table I. Stress ratio at failure for ~ = 3()0

(External cone)

'" 8 [eqn (45») Rr[eqn (47»)

o 0 5.51
15 -10.9 6.57
30 -23.6 7.19



Conical failure criteria in principal stress space 565

result in a shear strength identical to that predicted by Mohr-Coulomb. For the External
cone, however, even for friction angles less than the well-known singularity at t/J = 36.9°,
the predicted strength considerably overestimates the Mohr-Coulomb value for all values
of the dilation angle.
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